NanoCent = Nanomaterials Centre for Advanced Applications

The aim of the project NANOCENT is to establish at the Faculty of  Mathematics and Physics of the Charles University in Prague a top scientific center which will integrate scientists dealing with nanomaterial research. Priority research areas are: (1) materials on the basis of severly impaired carbon used in surface chemistry, energy applicaions and microelectronics; (2) nanocrystalline and epitaxial thin films for microelectronics; (3) nanocrystalline metal oxides with photocatalytic properties and (4) ultra-fine grain titanium and magnesium alloys for biomedical applications. The center focuses on fundamental research, however it is also opened to cooperation with domestic and foreign industrial enterprises to which it can offer
assistance of highly motivated, experienced scientists and wide variety of modern analytical techniques and top-class, unique equipment for materials microstructure and properties investigation.


  • Upcoming Seminars

    There are no upcoming events at this time.

New instruments were purchased and installed:

  • Instron ElectroPuls E10000 Linear-Torsion All-Electric Test Instrument: designed for dynamic and static testing on a wide range of materials and components
  • Rigaku SmartLab 9kW rotating anode general purpose X-ray diffractometer: diffractometer for diffraction on polycrystalline materials and high resolution diffraction on epitaxial layers. The device is versatile, allowing you to measure both powders and thin layers. High resolution is enabled through Kal component of the copper radiation using the Johannson monochromator.
  • Xeuss 2.0 SAXS/WAXS System: X-ray Diffractometer for Measurements of the Small Angle X-ray Scattering


Equipment Participation
SEM Zeiss Auriga 40%
SEM FEI QuantaTM 200 30%
Difractometer Panalytical X’Pert MRD 25%
Difractometer D500 25%
AFM Bruker Dimension Edge 30%
Electrical resistance measuring apparatus 40%
INSTRON 5882 40%
INSTRON 1195R 20%
Potentiostat Autolab PGSTAT128N 30%
Apparatus for thin layer deposition 30%
Tri Arc Furnace – Czochralski. 10%
TEM JEOL 2200FS 30%
TEM JEOL 2000FX 30%
Difractometer Panalytical X’Pert MPD 25%
Difractometer Rigaku Rapid II 25%
Malvern Zetasizer Nano ZS 20%
INSTRON 1186R 20%
Micro-hardness Qness Q10 30%
Cryomill Union model 01-ATTRITOR 40%
Optical furnace 20%
Universal Induction furnace for the growth of monocrystals in a closed crucible by the Bridgman method 10%
Difractometer Bruker D8 Advance 20%
Laue Photonic Science for orientation of the Monocrystalline samples 10%
Mono Arc furnace for polycrystals samples preparing 10%
Resistive furnaces for Annealing and melting of materials 15%
Chemical Laboratory 10%
Technology workroom 40%
X-ray cooling, formation of demineralized water 40%
New equipments
Universal X-Ray difractometer 100%
SAXS / GISAXS system 100%
Universal Static-dynamic deformation and fatigue machine 100%

Booking calendars for X-Ray:

Research Tasks

Four subprojects

  • A1 Nanocrystalline highly perturbed carbon materials (M. Dopita)
  • A2 Epitaxial and nanocrystalline thin layers (V. Holý)
  • A3 Real structure of nanocrystalline materials (R. Kužel)
  • A4 Ultrafine-grained materials (M. Janeček and M. Karlík)

Specification of individual research goals of the project


  1. Development and application of advanced methods describing the X-ray scattering on nanocrystalline highly perturbed turbostratic carbon materials.
  2. Description of microstructure and properties of industrially prospective carbon based nanomaterials, namely black carbons, carbon resins, hydrogen containing carbons, hard/soft non-graphitising carbons, pyrolytic and activated carbons, carbon nanotubes (SWCNTs, MWCNTs, CNTs) and glassy carbons on the basis of the X-ray scattering method results.
  3. Study of the Li-ion intercalation into the various types of carbon nanomaterials during charging/discharging of Li-ion batteries.


  1. Development of the theoretical model of the diffuse scattering of X-rays on threading and misfit dislocations with the InGaN/GaN system.
  2. Development of the procedure of studying the local In concentration inhomogeneities within the epitaxial layers.


  1. Extension of the Debye formula used for description of the diffraction patterns of the nanocrystalline materials in regard to the preferential orientation of nanocrystallites.
  2. Development of the procedure for estimating the amorphous amount in the nanocrystalline materials and thin layers.
  3. Development of the methodology for studying the surface layer of the nanoparticles which could be different from the nano-particle interior.


  1. Phenomenological description of the influence of severe plastic deformation on phase transformations and physical properties of Ti and Mg biocompatible alloys.
  2. The employment of advanced experimental techniques for detail investigation of specific microstructure processes in UFG materials (grain fragmentation and refinement, deformation of precipitates, segregation of alloying elements on grain boundaries, heterogeneous precipitation, microstructural stability, etc.).

The development of application potential of UFG materials, specifically in the areas of nuclear and fission energetics, micro-electro-mechanical systems (MEMS) and in structural applications. The use of the tailored materials for specific applications.


  1. Twin domain imaging in topological insulator Bi2Te3 and Bi2Se3 epitaxial thin films by scanning X-ray nanobeam microscopy and electron backscatter diffraction
    Dominik Kriegner, Petr Harcuba, Jozef Veselý, Andreas Lesnik, Guenther Bauer, Gunther Springholz and Václav Holý
    Appl. Cryst. (2017). 50, 369-377
  2. Evolution of ω phase during heating of metastable β titanium alloy Ti–15Mo
    Zháňal, Pavel, Harcuba, Petr, Hájek, Michal, Smola, Bohumil, Stráský, Josef, Šmilauerová, Jana, Veselý, Jozef, Janeček, Miloš
    Journal of materials science, 2018, v.53, no.1, pp. 837-845
  3. Exceptional mechanical properties of ultra-fine grain Mg-4Y-3RE alloy processed by ECAP
    Peter Minárik, Jozef Veselý, Robert Král, Jan Bohlen, Jiří Kubásek, Miloš Janeček, Jitka Stráská,
    Materials Science and Engineering: A, Volume 708, 2017, Pages 193-198,
  4. Structural stability of ultra-fine grained magnesium alloys processed by equal channel angular pressing
    Janeček et al,
    IOP Conf. Ser.: Mater. Sci. Eng., 2017, 194 012022
  5. Microstructure development of ultra fine grained Mg-22wt%Gd alloy prepared by high pressure torsion
    Čížek, P. Hruška, T. Vlasák, M. Vlček, M. Janeček, P. Minárik, T. Krajňák, M. Šlapáková, M. Dopita, R. Kužel, T. Kmječ, J.G. Kim, H.-S. Kim,
    Materials Science and Engineering: A, Volume 704, 2017, Pages 181-191,
  6. Ageing response of sub-transus heat treated Ti–6.8Mo–4.5Fe–1.5Al alloy
    Šmilauerová, M. Janeček, P. Harcuba, J. Stráský, J. Veselý, R. Kužel, H.J. Rack,
    Journal of Alloys and Compounds, Volume 724, 2017, Pages 373-380,
  7. Interband absorption edge in the topological insulators Bi2(Te1−xSex)3
    Dubroka, O. Caha, M. Hronček, P. Friš, M. Orlita, V. Holý, H. Steiner, G. Bauer, G. Springholz, and J. Humlíček
    Phys. Rev. B 96, 235202 – Published 12 December 2017
  8. Kinetic Monte Carlo simulation of growth of Ge quantum
    dot multilayers with amorphous matrix
    Jan Endres, Václav Holý, Stanislav Daniš, Maja Buljan
    J Nanopart Res (2017) 19: 135
  9. Density of bunched threading dislocations in epitaxial GaN layers as determined using X-ray diffraction
    Barchuk, V. Holý, and D. Rafaja
    Journal of Applied Physics 123, 161552 (2018)
  10. Observation of individual stacking faults in GaN microcrystals by x-ray nanodiffraction
    Holý, D. Kriegner, A. Lesnik, J. Bläsing, M. Wieneke, A. Dadgar, and P. Harcuba
    Appl. Phys. Lett. 110, 121905 (2017)
  11. Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering
    Molnárová, Málek, Veselý, Šlapáková, Minárik, Lukáč, Chráska, Novák, Průša F.
    Materials (Basel). 2017 Sep 20
  12. Magnetic properties of the CrMnFeCoNi high-entropy alloy
    Oldřich Schneeweiss, Martin Friák, Marie Dudová, David Holec, Mojmír Šob, Dominik Kriegner, Václav Holý, Přemysl Beran, Easo P. George, Jörg Neugebauer, and Antonín Dlouhý
    Rev. B 96, 014437 – Published 28 July 2017
  13. Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffraction
    Arman Davtyan, Sebastian Lehmann, Dominik Kriegner, Reza R. Zamani, Kimberly A. Dick, Danial Bahrami, Ali Al-Hassan, Steven J. Leake, Ullrich Pietsch, and Václav Holý
    J Synchrotron Radiat. 2017 Sep 1; 24(Pt 5): 981–990
  14. Magnetic structure of the mixed antiferromagnet NdMn0.8Fe0.2O3
    Matúš Mihalik, Marián Mihalik, Andreas Hoser, Daniel M. Pajerowski, Dominik Kriegner, Dominik Legut, Kristof M. Lebecki, Martin Vavra, Magdalena Fitta, and Mark W. Meisel
    Rev. B 96, 134430 – Published 27 October 2017
  15. Magnetic anisotropy in antiferromagnetic hexagonal MnTe
    Kriegner, H. Reichlova, J. Grenzer, W. Schmidt, E. Ressouche, J. Godinho, T. Wagner, S. Y. Martin, A. B. Shick, V. V. Volobuev, G. Springholz, V. Holý, J. Wunderlich, T. Jungwirth, and K. Výborný
    Phys. Rev. B 96, 214418 – Published 13 December 2017
  16. Structure of epitaxial SrIrO3 perovskite studied by interference between X-ray waves diffracted by the substrate and the thin film
    Horák, D. Kriegner, J. Liu, C. Frontera, X. Marti and V. Holý
    J. Appl. Cryst. (2017). 50, 385-398
  17. Dependence of twinned volume fraction on loading mode and Schmid factor in randomly textured magnesium,
    Jan Čapek, Kristián Máthis, Bjørn Clausen, Matthew Barnett,
    Acta Materialia, Volume 130, 2017, Pages 319-328
  18. Two-Dimensional Jeff=1/2 Antiferromagnetic Insulator Unraveled from Interlayer Exchange Coupling in Artificial Perovskite Iridate Superlattices
    Lin Hao, D. Meyers, Clayton Frederick, Gilberto Fabbris, Junyi Yang, Nathan Traynor, Lukas Horak, Dominik Kriegner, Yongseong Choi, Jong-Woo Kim, Daniel Haskel, Phil J. Ryan, M. P. M. Dean, and Jian Liu
    Rev. Lett. 119, 027204 – Published 14 July 2017
  19. Electrical resistivity of 5f-electron systems affected by static and dynamic spin disorder
    Havela, M. Paukov, V. Buturlim, I. Tkach, D. Drozdenko, M. Cieslar, S. Mašková, M. Dopita, and Z. Matěj
    Phys. Rev. B 95, 235112 – Published 7 June 2017
  20. Czochralski growth of LaPd2Al2 single crystals,
    Doležal, A. Rudajevová, K. Vlášková, D. Kriegner, K. Václavová, J. Prchal, P. Javorský,
    Journal of Crystal Growth, Volume 475, 2017, Pages 10-20
  21. Influence of zinc addition on the precipitation in Al-Mn-Zr alloys
    Karlík, M. Vronka, P. Haušild, O. Kovářík,
    Kovove Materialy 55(6):395-401 · January 2017
  22. In situ probing of magnetron sputtered Pt-Ni alloy fuel cell catalysts during accelerated durability test using EC-AFM,
    Ivan Khalakhan, Mykhailo Vorokhta, Peter Kúš, Milan Dopita, Michal Václavů, Roman Fiala, Nataliya Tsud, Tomáš Skála, Vladimír Matolín,
    Electrochimica Acta, Volume 245, 2017, Pages 760-769