Home

NanoCent = Nanomaterials Centre for Advanced Applications

Research tasks

Four subprojects

  • A1 Nanocrystalline highly perturbed carbon materials (M. Dopita)
  • A2 Epitaxial and nanocrystalline thin layers (V. Holý)
  • A3 Real structure of nanocrystalline materials (R. Kužel)
  • A4 Ultrafine-grained materials (M. Janeček and M. Karlík)

Specification of individual research goals of the project

A1

  1. Development and application of advanced methods describing the X-ray scattering on nanocrystalline highly perturbed turbostratic carbon materials.
  2. Description of microstructure and properties of industrially prospective carbon based nanomaterials, namely black carbons, carbon resins, hydrogen containing carbons, hard/soft non-graphitising carbons, pyrolytic and activated carbons, carbon nanotubes (SWCNTs, MWCNTs, CNTs) and glassy carbons on the basis of the X-ray scattering method results.
  3. Study of the Li-ion intercalation into the various types of carbon nanomaterials during charging/discharging of Li-ion batteries.

A2

  1. Development of the theoretical model of the diffuse scattering of X-rays on threading and misfit dislocations with the InGaN/GaN system.
  2. Development of the procedure of studying the local In concentration inhomogeneities within the epitaxial layers.

A3

  1. Extension of the Debye formula used for description of the diffraction patterns of the nanocrystalline materials in regard to the preferential orientation of nanocrystallites.
  2. Development of the procedure for estimating the amorphous amount in the nanocrystalline materials and thin layers.
  3. Development of the methodology for studying the surface layer of the nanoparticles which could be different from the nano-particle interior.

A4

  1. Phenomenological description of the influence of severe plastic deformation on phase transformations and physical properties of Ti and Mg biocompatible alloys.
  2. The employment of advanced experimental techniques for detail investigation of specific microstructure processes in UFG materials (grain fragmentation and refinement, deformation of precipitates, segregation of alloying elements on grain boundaries, heterogeneous precipitation, microstructural stability, etc.).
  3. The development of application potential of UFG materials, specifically in the areas of nuclear and fission energetics, micro-electro-mechanical systems (MEMS) and in structural applications. The use of the tailored materials for specific applications.

Equipment

Equipment Participation
SEM Zeiss Auriga 40%
SEM FEI QuantaTM 200 30%
Difractometer Panalytical X’Pert MRD 25%
Difractometer D500 25%
AFM Bruker Dimension Edge 30%
Electrical resistance measuring apparatus 40%
INSTRON 5882 40%
INSTRON 1195R 20%
Potentiostat Autolab PGSTAT128N 30%
Apparatus for thin layer deposition 30%
Tri Arc Furnace – Czochralski. 10%
TEM JEOL 2200FS 30%
TEM JEOL 2000FX 30%
Difractometer Panalytical X’Pert MPD 25%
Difractometer Rigaku Rapid II 25%
Malvern Zetasizer Nano ZS 20%
NETSCH DSC 404C 40%
INSTRON 1186R 20%
Micro-hardness Qness Q10 30%
Cryomill Union model 01-ATTRITOR 40%
Optical furnace 20%
Universal Induction furnace for the growth of monocrystals in a closed crucible by the Bridgman method 10%
Difractometer Bruker D8 Advance 20%
Laue Photonic Science for orientation of the Monocrystalline samples 10%
Mono Arc furnace for polycrystals samples preparing 10%
Resistive furnaces for Annealing and melting of materials 15%
Chemical Laboratory 10%
Technology workroom 40%
X-ray cooling, formation of demineralized water 40%
New equipments
Universal X-Ray difractometer 100%
SAXS / GISAXS system 100%
Universal Static-dynamic deformation and fatigue machine 100%

Team

Research team
RNDr. Milan Dopita, Ph.D.
prof. RNDr. Miroslav Karlík, Dr., Ph.D.
prof. RNDr. Václav Holý, CSc.
doc. RNDr. Miloš Janeček, CSc.
prof. RNDr. Radomír Kužel, CSc.
doc. RNDr. Stanislav Daniš, Ph.D.
RNDr. Jana Šmilauerová, PhD.
RNDr. Jan Čapek
Mgr. Petr Cejpek
Mgr. Lukáš Horák, PhD.
RNDr. Petr Harcuba, PhD.
Dr. Dominik Kriegner
Mgr. Cinthia Antunes Correa
Mgr. Orsolya Molnárová
Mgr. Mykhaylo Paukov
Administrative team
RNDr. Zdeňka Bubeníková, PhD.
Mgr. Kateřina Mikšová
Ing. Marcela Ryzcová
Bc. Štěpán Sechovský, Dis.
Eva Chrpová
Technician
ing. Barbora Vondráčková